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Abstract 

Fourier Transforms play an important role in applied sciences to better 
understand various physical phenomena. Especially in computational 
sciences, Fourier Transforms are very useful. In this project, we study 
continuous Fourier Transforms, Discrete Fourier Transforms, and their 
applications in science and engineering i.e. in noise reduction, image 
compression, Biomedical Engineering, COVID-19 data analysis and etc. 
Here, the applications of one dimensional and two-dimensional Fourier 
Transform have been described through noise filtering of signals and 
image processing. A few examples are illustrated to demonstrate the 
efficiency of Fourier Transforms. We implement the Fourier Transform in 
our real-life problems within the framework of MATLAB.  

Many images that we use in our study have been taken from various 

internet sources to understand and apply DFT and FFT. We heartily 

acknowledge such anonymous help. 

Keywords:  Fourier Transform, Discrete Fourier Transform (DFT), Fast 

Fourier Transform (FFT), Image Processing, Biomedical Engineering

 INTRODUCTION 

Jean-Baptiste Joseph Fourier (1768–1830), who made 
substantial contributions to the study of trigonometric series, 
is commemorated with the name of the Fourier series. After 
initial research by Leonhard Euler, Jean le Rond d’Alembert, 
and Daniel Bernoulli, the Fourier Series is named after Jean-
Baptiste Joseph Fourier. The formula for the Fourier Series 
coefficients was initially provided by Euler. Clairaut wrote what 
is now known as the first formula for the Discrete Fourier 
transform (DFT) in 1754, based on Euler’s research. A DFT 
formula that does not rely on interpolating exclusively using 
odd or even periodic functions was published by Carl Friedrich 
Gauss (1777–1855) in 1805. The Fourier Transform and its 
name can be traced back to Joseph Fourier’s (1768–1830) 
publication on heat flow in 1822. 

Joseph Fourier wrote:  
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Multiplying both sides by cos(2𝑘 + 1)
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 and then integrating 

by 𝑦 = −1 and 𝑦 = 1 Yields: 
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This instantly provides any coefficient 𝑎𝑘 of the 

trigonometrical series for 𝜙(𝑦) for any function that expands 

in this way. It is effective because, in the event if 𝜙 has 

such an expansion, the integral  
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Double Fourier Series: The concept of a Fourier series 

development for a single-variable function 𝑥 may be 

applied to the case of functions of two variables, 𝑥 and 𝑦 or 

𝑓 (𝑥, 𝑦). We can convert 𝑓(𝑥, 𝑦) into a double Fourier 

sine series, for instance 

𝑓(𝑥, 𝑦) = ∑ ∑ 𝐵𝑚𝑛 sin
𝑚𝜋𝑥
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Where,  
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Similarly, we can expand 𝑓(𝑥, 𝑦) into a double Fourier Cosine 
series 

𝑓(𝑥, 𝑦) = ∑ ∑ 𝐵𝑚𝑛 cos
𝑚𝜋𝑥
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Now we move on to discuss some basics of Fourier 
Transforms. The rest of the paper is organized in the 
following way 

• Fourier Transform and their preliminaries 
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has been discussed. 

• Application of image processing using 
two-dimensional Fourier Transform in 
different technologies of medical field has 
been explained. 

• We finish this study with a short 

conclusion, future research directions & 

limitations. 

1.1    | Fourier Transform 

A Fourier Transform (FT) is a mathematical transformation that 
decomposes functions that depend on either time or space into 
functions that depend only on frequency. A technique known 
as the Fourier Transform divides a waveform (a function or 
signal) into a different representation that is defined by sine 
and cosine expressions with changing frequencies. Any 
waveform may be described as the sum of sinusoidal 
components, as the Fourier Transform demonstrates. We 
learned how to convert any periodic function into a sum of 
sinusoids using the Fourier Series. The application of this 
concept to a non-periodic function is the Fourier Transform. 
The Fourier Transform calculates the frequency of oscillations. 
Fourier Transform measures how much oscillations are at the 
frequency ω in the f. The mathematical form of the Fourier 
Transform is 

𝐹(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞

 

The Fourier Transform is applicable for non-periodic signals, 
but the Fourier series is only relevant to periodic signals. This 
is the distinction between the Fourier Transform and the 
Fourier Series. 
Some of the properties of the Fourier Transform include: 

1.  It is a linear transform– If 𝑔(𝑡)  and ℎ(𝑡)  are two 

Fourier Transforms given by 𝐺(𝑓)  and 𝐻(𝑓) 

respectively, then the Fourier Transform of the linear 

combination of g and t can be easily calculated.  

2. Time shift property– The magnitude of the spectrum 

shifts by the same amount in the Fourier Transform 

of 𝑔(𝑡 − 𝑎), where ’𝑎’ is a real value and shifts the 

original function.  

3. Modulation property– When a function is multiplied 

in time, another function modulates the original 

function.  

4. Duality– The Fourier Transform of 𝐺(𝑡) is 𝑔(−𝑓) if 

𝑔(𝑡) possesses the Fourier Transform 𝐺(𝑓). 

1.2    | Fourier Integral 

To figure out the Fourier transform is to use the Fourier 

integral. If a function 𝑓(𝑥) meets the Dirichlet conditions on 

each and every finite interval and is piecewise smooth on 

every interval [−𝐿, 𝐿] , and if the integral ∫ |𝑓(𝑥)|𝑑𝑥
∞

−∞
 

converges then 
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the Fourier Integral. The second integral in the equation can 
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So, another form of the Fourier Integral can be written as  
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The Fourier Integral is very useful in the field of electrical 

communication, and it forms the basis of Cauchy’s method for 

the solution of the partial differential equation. 

1.2.1    | Advantages of Fourier Transform 

A Fourier transformation’s magnitude or width is expressed in 

terms of points. Both the frequency of values from the signal 

to be studied, as well as the number of values the conversion 

returned, are represented by the number of points employed 

in the transformation. The frequency resolution will be greater 

the more points that are employed in the transition. The 

Fourier Transform employs the entire waveform to transfer the 

signal into the frequency domain while maintaining 

information in amplitude, harmonics, and phase. The signal 

may be converted back into the time domain thanks to the 

Fourier transformation’s preservation of phase information. 

An essential aspect of a signal that may be revealed by the 

Fourier Transform is its frequency components. By breaking 

up complex or noisy data into a sequence of trigonometric or 

exponential functions, it aims to make the data more 

understandable. Fourier transform is employed to ease 

transmissions and interpolate functions. Identifying frequency 

components is widely utilized in signal processing and 

represents one of the key tasks. It is utilized to break down the 

amplitude of a melodic composition into the relative intensities 

of each of its individual pitches. It is used in engineering to 

identify the main frequencies in a vibration analysis. 

1.2.2    | Disadvantages of Fourier Transform 

The fundamental tradeoff between frequency and temporal 

precision in the Fourier transform is its primary limitation. The 

Fourier transform cannot be applied to every unstable signal. 

Given that the signal’s stability is the first requirement for the 

Fourier transform, in the realm of signals and systems, the 

Fourier transform has resulted in an extremely narrow and 

constrained perspective of frequency. 

1.3    | Discrete Fourier Transform(DFT) 

Decomposing a series of numbers into components with 

various frequencies yields the discrete Fourier Transform. The 

discrete Fourier Transform is used to finite evenly spaced 

sequences as follows: 𝑌𝑘 = ∑ 𝑋𝑛𝑒−
2𝜋𝑖

𝑁 𝐾𝑛
𝑁−1
𝑛=0 , where 𝑌𝑘 

indicates the 𝑘𝑡ℎ  element in the discrete Fourier Transform 

vector and 𝑋𝑛  indicates the 𝑛𝑡ℎ  element in the original time 

sequence. 𝑁 is the number of elements in the time series. 

As defined by, the inverse discrete Fourier Transform is 𝑋𝑛 =

1

𝑁
∑ 𝑌𝑘𝑒

2𝜋𝑖

𝑁 𝐾𝑛
𝑁
𝑛=1 . 

Think of an MP3 player connected to a speaker to get an idea 

of how the DFT accomplishes. Audio data from the MP3 

player is sent to the speaker as variations in electrical signal 

voltage. The speaker drum vibrates as a result of those 

changes, and this in turn will cause air molecules to move and 

produce sound. The variations in an audio signal over time 

can be represented as a graph, where the x-axis represents 

time and the y-axis represents the electrical signal’s voltage 

or even the mobility of the speaker’s drum or air molecules. In 

either case, the signal appears as a squiggle-like irregular 
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wave. However, when we hear the music that was created by 

that squiggle, we can easily identify every instrument in a 

symphony orchestra, all of which were simultaneously playing 

distinct notes. This is due to the fact that the unpredictable 

squiggle is essentially the sum of several considerably more 

regular squiggles that stand in for various sound frequencies. 

Frequency simply refers to how quickly air molecules move 

back and forth or how quickly a voltage changes, and it may 

be shown as how quickly a regular squiggle moves up and 

down. When you combine two frequencies, the resultant 

squiggle moves upward where both of the component 

frequencies move downward where they both move 

downward, and it moves in the middle where they move in 

opposite directions. Decomposing a signal into its constituent 

frequencies is what the DFT performs mathematically, much 

like the human ear does physically. Some of the important 

applications of the Discrete Fourier Transform include 

• Solving partial differential equations. 

• Detection of targets from radar echoes.  

• Correlation analysis.  

• Computing polynomial multiplication. 

• Spectral analysis. 

• Convolutions and huge integer multiplications are 

examples of operations. 

• Linear filtering etc. 

1.4    | Fast Fourier Transform (FFT) 

By matching together even and odd functions throughout 

calculation, it is possible to considerably improve the 

computation of the Discrete Fourier Transform as well as its 

Inverse Transform. The Fast Fourier Transform, which 

reduces the computing cost of the discrete Wavelet Transform 

from 𝑂(𝑁2) to 𝑂(𝑁𝑙𝑜𝑔𝑁), is a combination of even and odd 

functions. It also has an inverse Fast Fourier Transform. The 

Discrete Fourier Transform of an arbitrary function is re-

expressed using FFT. In the context of 𝑁1 smaller DFTs of 

sizes 𝑁2, consecutively, composite size 𝑁 =  𝑁1𝑁2 to make 

highly composite 𝑁’s computation time 𝑂(𝑁𝑙𝑜𝑔𝑁). The DFT 

matrix into a product of sparse (a matrix where most of the 

entries are zero) components, which then quickly computes 

transformations. The outcomes are obtained by the data being 

converted to the frequency domain using the FFT. The 

contemporary generic fast Fourier Transform algorithm was 

developed in 1965 and is commonly attributed to Cooley and 

John Tukey.  

1. Fast multiplication of large integers and polynomials. 

2. Effective multiplication of vectors and matrices. 

3. Algorithms for filtering. 

4. Discrete cosine or sine transforms with quick 

algorithms. 

5. Chebyshev approximation quickly.  

6. Computation of the distributions of isotopes. 

 FOURIER TRANSFORM IN BIOMEDICAL 

ENGINEERING 

A technique for resolving physical issues is the Fourier 

Transform. Numerous uses of the Fast Fourier Transform are 

found in the medical world. The Fast Fourier Transform (FFT) 

is utilized in medical image de-noising in a number of medical 

imaging modalities to recreate pictures from collected raw 

data. An effective method for simplifying the analysis of 

signals in the frequency domain is the Fast Fourier Transform. 

The core of digital signal processing is the Fast Fourier 

Transform (FFT). It is important in signal processing 

applications including de-noising, filtering, and compression. 

2.1    | 2-D Image processing with FFT 

 
We shall focus just on the Discrete Fourier Transform in this 
presentation as we are only interested in digital images (DFT). 
As the Discrete Fourier Transform (DFT) works by sampling 
the continuous Fourier Transform, it produces only a limited 
number of frequency values. Nonetheless, this number is 
typically sufficient to describe the image effectively in the 
spatial domain. The density of frequency components directly 
corresponds to the number of pixels in the original image, so 
the image size remains unchanged when moving between the 
spatial and frequency domains. In the case of a square image 
with dimensions 𝑁 × 𝑁, the two-dimensional DFT is expressed 

as:  𝐹(𝑘, 𝑙) =
1

𝑁2
∑ ∑ 𝑓(𝑎, 𝑏)𝑒

−2𝜋𝑖(
𝑘𝑎

𝑁
+

𝑙𝑏

𝑁
)𝑁−1

𝑏=0
𝑁−1
𝑎=0  

Here, the exponential term is the basis function equivalent 
towards each point 𝐹(𝑘, 𝑙) in the Fourier space, and 𝑓(𝑎, 𝑏)  
the picture in the spatial domain. According to the equation, 
each point’s value (𝑘, 𝑙) is determined by multiplying the spatial 
picture by the appropriate base function and adding the 
results.The fundamental operations are sine and cosine waves 
with progres sively higher frequencies, where 𝐹(0,0) denotes 
the DC- component of the picture, which corresponds to 
average brightness, and 𝐹(𝑁 −  1, 𝑁 −  1)  is the maximum 
frequency. The Fourier image can also be re-transformed into 
the spatial domain in a similar manner. The formula for the 
Inverse Fourier Transform is:  

𝐹(𝑎, 𝑏) =
1

𝑁2 ∑ ∑ 𝑓(𝑘, 𝑙)𝑒
−2𝜋𝑖(

𝑘𝑎
𝑁

+
𝑙𝑏
𝑁

)

𝑁−1

𝑏=0

𝑁−1

𝑎=0

 

To compute the values using the above equations, a double 
summation is required for each pixel in the image. However, 
since the Fourier Transform is separable, this process can be 
simplified. The transformation begins by applying 𝑁 one-
dimensional Fourier Transforms along one-dimension of the 
spatial image, resulting in an intermediate representation. 
Then, another set of 𝑁 one-dimensional transforms is applied 
along the other dimension to produce the final frequency-
domain image. This approach effectively reduces the 
computational load by converting the two-dimensional 
transform into a sequence of 2𝑁 one-dimensional transforms. 
Despite this optimization, computing the standard one-
dimensional DFT remains mathematically intensive. If we use 
the Fast Fourier Transform (FFT) to estimate the one-
dimensional DFTs, this may be condensed to 𝑁𝑙𝑜𝑔2𝑁. This is 
a major advancement, especially for huge photos. The size of 
the input picture that may be changed is often limited to 𝑁 =
2𝑛,  in which 𝑛  is an integer, by most FFT variants. The 
literature does a good job of describing the mathematical 
specifics. The output of the Fourier Transform is a complex-
valued image, which can be represented in two ways: either by 
separating it into real and imaginary components, or by using 
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its magnitude and phase. In image processing, it’s common to 
display only the magnitude because it contains most of the 
structural information about the spatial domain image. 
However, if we plan to apply any operations in the frequency 
domain and then convert the image back to its original spatial 
form, both the magnitude and phase information must be 
preserved to ensure accurate reconstruction. Compared to a 
picture in the spatial domain, the Fourier domain image has a 
significantly wider range. Because of this, its values are often 
computed and stored as float values in order to be suitably 
precise. 

 

2.2    | Fourier Transform in medical imaging 

The Fourier Transform is a fundamental tool in image 

processing that breaks down an image into its sine and cosine 

components. While the original image exists in the spatial 

domain, the transformed result represents it in the frequency 

domain. frequency-based representation, each point 

corresponds to a specific frequency present in the spatial 

image. An image can be mathematically defined as some 

function 𝑓(𝑥, 𝑦), in which 𝑥 and y are the spatial coordinates 

of the image and f (x, y) represents the brightness of the image 

at the point (𝑥, 𝑦).Digital pictures, where 𝑓(𝑥, 𝑦) is a function 

having numerical values for 𝑥, 𝑦 and brightness are used by 

computers. In digital photos, the brightness is related to as the 

gray level, and each component of the image is referred to as 

a picture element, or pixel, for short. A typical digital image 

could have a matrix with a set number of gray levels of 256 by 

256 or more. The quantity of light that passes through an 

image-containing film is represented by the gray level.  

Several sectors of Fourier Transform in medical imaging: 

• Plain X-Rays.  

• MRI (Magnetic Resonance Imaging).  

• CT (Computed Tomography).  

• CAT (Computerized Axial Tomography) 

• Chest Radiography. 

2.3    | X-Ray 

High-energy electromagnetic radiation with penetrating 

properties is known as an X-ray (X-radiation). The majority of 

X-rays have wavelengths between 10 picometers and 10 

nanometers, which correspond to frequencies between 30 

petahertz and 30 exahertz (310(16) Hz and 310(19) Hz). The 

most common uses of X-rays are to look for fractures (broken 

bones), identify pneumonia, and detect breast cancer. During 

X-Rays are sent from the source, the X-Ray gives a 2-D 

projection to the 3-D object. And then essentially, we get 2-D 

images. The X-Ray Beam loses some energy as it passes 

through the medium is ln(𝐼) − ln(𝐼0) = ∫ 𝐴(𝑥)𝑑𝑥
𝑥

𝑥0
, where 𝐼0 is 

the initial intensity of beam and 𝐼 is the final intensity of beam. 

For getting 𝐴(𝑥) , the Radom Transform is needed. 

 𝑅(𝑓)(𝑝, 𝜃) = ∫ 𝑓(𝑥(𝑠), 𝑦(𝑠))𝑑𝑠
∞

−∞
, where θ is the angle with 𝑥-

axis and 𝑝 is the distance from origin. 

 

2.4    | The Radon Transform Theorem 

 

An image matrix is projected along predetermined directions 

using the radon function. A collection of line integrals makes 

up a projection of the two-dimensional function 𝒇(𝒙, 𝒚).  By 

using parallel routes, or beams, in a certain direction, the 

radon method computes the line integrals from many sources. 

The dis tance between the beams is 1 pixel unit. The radon 

function rotates the source about the center of the picture, 

taking several parallel-beam projec tions of the image from 

various angles. The projection in the next image is shown at 

a certain rotation angle. For a function 𝒇(𝒑, 𝜽) defined on 𝑹𝟐 

with compact support the Radon Transform of 𝒇, denoted by 

𝑹(𝒇), is defined for 𝒑 ∈  𝑹 and 𝜽 ∈ (𝟎, 𝝅] as  

𝑅(𝑓)(𝑝, 𝜃) = ∫ 𝑓(𝑥(𝑡), 𝑦(𝑡))𝑑𝑡
∞

−∞
, When the value zero is 

accepted outside of a compact set, a function has compact 

support. Given that we are only working with discrete regions 

(or slices) of an object, this is a realistic condition for a medical 

imaging task. Remember that we want to figure out the 

object’s attenuation coefficient, which depends on its intensity. 

Since we are only working with finite slices, the attenuation 

coefficient must be equal to 0 outside of some limited area. 

The Fourier Slice Theorem explains that the one-dimensional 

Fourier Transform of a projection taken at an angle 

𝜃 corresponds precisely to a line in the two-dimensional 

Fourier domain of the object, oriented at that same angle 

through the origin. This means that each projection provides 

a slice of the object's full frequency representation. By 

collecting projections at various angles, we can gradually 

assemble the complete frequency-domain image. Once the 

Fourier domain is fully constructed, applying a two-

dimensional Inverse Fourier Transform enables us to recover 

the original object in the spatial domain. It serves as a 

connection between the two-dimensional and one-

dimensional Fourier Transforms of the Radon Transform. 

2.5    | Chest Radiography 

A chest radiograph, also known as a chest X-ray (CXR) or 

chest film, is a radiographic projection of the chest used to 

identify problems affecting the chest, its contents, and 

adjacent structures. The most frequent film taken in medicine 

is a chest radiograph. Using Fourier Transform methods, a 

shift invariant model of the two-dimensional point spread 

response functions of the scattered radiation is deconvolved. 

No specialist imaging apparatus is needed for this method 

because it employs a digital radiograph obtained using a 

common chest imaging methodology. The shift variant form of 

the scatter model is optimal for the lung field, but when same 

model shape is applied to other chest areas, appropriate 

compensation is offered. Initial analysis indicates that this 

method can increase picture contrast over the whole chest 

area. The utilization of the FT and its inverse to eliminate 

unnecessary data from a picture: 

1. An image created by combining the sine wave and 

chest radiography images, as well as the 

comparable Fourier spectrum in. 
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2. The undesired interference created by the sinusoidal 

brightness pattern may be eliminated by modifying 

the spatial frequency components, as indicated by 

the darker areas in the figure. 

3. The original chest picture is then recovered using the 

inverse FT and is largely undistorted as 

demonstrated in. 

4. Theoretically, further editing technique improvement 

would enable total visual quality reconstruction

 

Figure 1:  A Chest Radiograph and its 2-D Fourier spectrum 
are shown in (a) and (b)respectively.  

The spatial frequency data display a wide range of values 

together with important vertical and horizontal characteristics 

connected to the vertebral column and ribs, respectively. 

2.6    | MRI 

Magnetic Resonance Imaging (MRI) is a diagnostic tool widely 

used by radiologists to visualize the body's internal structures 

and physiological processes. It uses powerful magnetic fields, 

gradient coils, and radiofrequency waves to generate detailed 

images of organs and tissues. MRI is commonly applied in 

hospitals and clinical settings for diagnosing diseases, 

monitoring treatment progress, and determining the stage of 

certain conditions. Compared to CT scans, MRI provides 

better contrast when imaging soft tissues, making it especially 

useful for examining areas like the brain and abdomen. 

The Fourier transform, a basic mathematical method 

commonly employed in signal processing, is commonplace in 

radiology and essential to the creation of contemporary MR 

images. It is necessary to have a fundamental comprehension 

of the Fourier transform’s functions in order to comprehend 

MRI procedures. The Fourier transform is the basis of several 

artifacts, including MR image encoding, filling of k-space, and 

other phenomena. 

The Fourier Transform allows us to analyze the frequency 

components of complex signals. These signals can be 

visualized and even manipulated in the frequency domain. A 

well-known clinical application of this is MR spectroscopy, 

where data is displayed in the form of frequency and 

amplitude spectra. In this spectrum, each peak represents the 

presence and relative concentration of different biological 

metabolites within a specific region of interest (ROI). These 

metabolites resonate at slightly different frequencies, 

reflecting variations in their chemical structures. 

2.7    | MR spectroscopy 

MR spectroscopy, unlike conventional MRI, is designed to 
analyze the chemical composition of a focused region of 
interest (ROI) rather than producing anatomical images. It 
uses a specific radiofrequency pulse bandwidth to target this 
smaller area. Various neuronal metabolites such as 
myoinositol (ML), choline (Cho), creatine (Cr), glutamate and 
glutamine (Glx), N-acetyl aspartate (NAA), lactate (Lac), and 
lipids (Lip) resonate at distinct frequencies due to their unique 
chemical structures. The signal returned from the ROI is a 
complex combination of echoes from these metabolites. 
When processed through the Fourier Transform, this signal is 
separated into individual frequency components and their 
relative amplitudes. Since the Fourier Transform reflects only 
relative values, the term “relative” is essential, and each 
peak’s height in the MR spectroscopy spectrum is meaningful 
only when compared to other peaks. 

 

Figure 2:  MR spectroscopy 

In this coronal brain slice, spatial frequencies are sampled by 
progressively varying the magnetic field gradients (indicated 
by open arrows in the top three images) during the frequency 
and phase encoding steps. Although only three examples are 
illustrated, fully populating k-space requires many different 
combinations of gradient settings. Once k-space is completely 
filled, the final image is reconstructed by applying the inverse 
Fourier Transform, which essentially integrates the 
contributions of all spatial frequencies to form the complete 
image. 

2.8    | K-SPACE 

The spatial frequencies in the MR picture are represented by 

an array of integers called. 𝐾 − space. The mystery is 

maintained by the widespread visual portrayal of k-space as 

a "galaxy." In k-space, each "star" represents a single data 

point collected from the MR signal, with its brightness 

indicating the strength of that specific spatial frequency’s 

contribution to the final image. Although k-space and the 

resulting MR image appear quite different, they actually 

contain the same underlying information about the scanned 

object. The two are mathematically linked through the Fourier 

Transform, which enables transformation between them. 

Even though they look very different, the K-pace "galaxy" and 

MR picture both contain the same data about the scanned 

item. The two depictions might be utilizing a sophisticated 

mathematical technique (the Fourier Transform), transformed 
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to one another. K-space is typically visualized as a rectangular 

grid defined by two main axes: 𝑘𝑥  and 𝑘𝑦  relating to the 

image’s side-to-side and top-to-bottom spatial dimensions, 

respectively. Unlike the image axes that represent physical 

positions, these k-space axes represent spatial frequencies in 

the 𝑥 and 𝑦 dimensions. As such, there isn’t a direct one-to-

one correspondence between image pixels (𝑥, 𝑦) and specific 

points (𝑘𝑥, 𝑘𝑦)  in k-space. Instead, each point in k-space 

contains information about the spatial frequency and phase 

that contributes to the entire image. Conversely, each pixel in 

the final MR image is influenced by the complete set of k-

space data. This frequency-based representation of an MR 

image is conceptually similar to the diffraction patterns seen 

in X-ray crystallography, optical systems, or holography. 

•  𝑘𝑥time signal 
𝑦: diff. phase gradients 

• FT in 𝑘𝑥: frequency in time (𝑥-position) 

FT in  𝑘𝑦: frequency in phase (𝑦-position) 

 

Figure 3: Every point in the picture and every point in k-space 

are mapped to one another. 

 
Fourier Transform is a bridge connecting spatial space and 
spatial frequency space and the signal can be converted back 
and forth between these two spaces using the Fourier 
Transform. 

 

Figure 4: 1D illustration for Fourier Transform 

The signal wave in red on the left is the square wave in spatial 

space by the Fourier Transform. The signal wave is 

decomposed into several trigonometric components with 

different spatial frequencies, and then these trigonometric 

components are assigned to k-space according to their spatial 

frequencies. That’s how we get its k-space. 

2.8.1    | Math of MRI 

We need to know how MRI image formation works from a 

mathematical point of view. We place a person or any object 

to be scanned into a very large magnet, and this magnet 

aligns the spins of the hydrogen nuclei. Now this creates a net 

magnetization, and this is basically the goal of MRI. Firstly, we 

send in a radio wave that tips the magnetization into the 

transverse plane, and then in order to encode the position, we 

add a magnetic field gradient. The magnetic field gradient 

changes the relative phase of these spins. 𝑀(𝑥)𝑒𝑖𝜙. Change 

in phase over change in time is frequency, so that means the 

phase is the integral of the frequency over time. 𝐵 is just 𝑔 

times 𝑥 nice linear gradient. If we assume that the person is 

not moving, so 𝑥 is not varying with time. 𝐺 =
𝑑𝐵

𝑑𝑥
  is the linear 

gradient in the magnetic field and in 𝑘 -space 𝑘 = 𝛾∫ 𝐺 𝑑𝑡 . 

Now we want to collect the signal with a radio frequency coil. 

Frequency coil sums up the spins over the entire space. 

Mathematically, we can represent that with an integral.  

𝜙 = ∫ 𝜔 𝑑𝑡 

    = ∫ 𝛾𝐵 𝑑𝑡 

    = ∫ 𝛾𝐺. 𝑥 𝑑𝑡 

    = 𝑥∫ 𝛾𝐺 𝑑𝑡 

    = 𝑥. 𝑘  

Finally, we get, 𝑀(𝑥) = 𝑒𝑖𝑥.𝑘. 

And it is an equation of the Fourier Transform. So, by twisting 

up the spins using magnetic field gradients and summing 

them up using an RF coil, we have created a Fourier 

Transform, and if our goal is to get this 𝑚  of 𝑥  From the 

collected signal, we simply have to apply an Inverse Fourier 

Transform to the signal, and we can get the $m$ of 𝑥. 

2.9    | Expandation of 2d illustration for brain image 

Firstly, we take the full transform of the spring image. It will 

first be decomposed into many components, and each 

component is the stripped image with that unique spatial 

frequency, then, they will be placed onto the k-space 

according to their spatial frequencies. After all components 

are placed correctly onto the k-space. The Fourier Transform 

is finished, and we get the k-space of this brain image. 

Inversely, the inverse Fourier transform allows us to recover 

the brain image from its k-space. First, the points on the k-

space will be converted back into many scraped images with 

different spatial frequencies according to their ease-based 

locations. Then by summing all these stripped images up, the 

image will be recovered. 

• The majority of an image's low-frequency 

components are found in the middle regions of k-

space, whereas its high-frequency components are 

found in the outside regions. 

• The line linking a point at the center of the k-space is 

always perpendicular to the strapped patterns. The 

points on the x-axis correlate to vertical patterns, 

while the points on the y-axis correspond to 

horizontal patterns. 
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2.10    | Utilizing the number of COVID-19 daily deaths in 

Fourier analysis 

In order to track the pandemic's behavior, the daily death toll 

is transformed to the frequency domain. The transformed 

peak spectrum may primarily reflect the intensity and 

progression of pandemic waves, rather than providing a direct 

measure of mortality.. Policymakers can use the frequency 

domain expression to determine whether to enhance their 

policies or not by understanding the pandemic cycle duration. 

For real-time analysis, Fast Fourier Transform (FFT) 

technology is typically employed. 

On Sunday, March 8, 2020, Bangladesh revealed the first 

three officially recognized instances of the coronavirus illness 

(COVID-19) in the nation. Few people are being affected by 

coronavirus so far. In Bangladesh, from 3 January 2020 to 17 

October 2022, there have been 2,032,832 confirmed cases of 

COVID-19 with 29,402 deaths, reported to WHO. As of 10 

October 2022, a total of 314,455,820 vaccine doses have 

been administered. 

 

Figure 5: Time-Domain Graph 

  

Figure 5 illustrates the daily death toll in Bangladesh, where 

the X-axis begins at '0' corresponding to March 8, 2020, and 

extends to '365', representing March 8, 2021.  

 

 

Figure 6: The outcome of an FFT-based spectrum analysis. 

Figure 6 displays the findings of a spectrum analysis 

performed using 365 days between March 8, 2020, and 

March 8, 2021. 

 

 

Figure 7: Fourier Transform of the daily number of deaths 
from March 8, 2020, to March 8, 2021. 
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Figure 8: Fourier Transform of the daily number of deaths 
from June 2021 to October 2021. 

The highest numbers of deaths were seen from June 2021 to 

October 2021 in Bangladesh. Figure 3.8 indicates higher 

amplitudes than Figure 3.6. 

The computed spectrum is shown in Figure 3.9 using 365 

days and different splitting days of 10 April, 30 June, 20 July, 

29 August, 5 September, and 17 October. 

1. Spectrum split on 10 April using the intervals 

[223:365] and [0:223] 

2. Spectrum split on 30 June using the intervals 

[181:365] and [0:181] 

3. Spectrum split on 20 July using the intervals 

[174:365]and [0:174] 

4. Spectrum split 29 August using the intervals 

[134:365] and [0:134] 

5. Spectrum split on 5 September using the intervals 

[114:365] and [0:114]  

6. Spectrum split on 17 October using intervals 

[33:365] and [0:33]  

 

Figure 9: Comparison of power spectra before and after 
specific split days, showing variations in the frequency 
patterns of COVID-19 daily death data. 

According to Figure 3.9a–f, the pandemic is suppressed 

during the longer period, whereas it recurs during the shorter 

cycle. The cycle duration utilizing the power peak spectrum 

provides a good description of the pandemic's propensity. 

By applying FFT (Fast Fourier Transform) to the daily death 

data, even those new to the analysis can identify patterns in 

the pandemic’s behavior or its cycle duration. 

A longer cycle typically indicates that restrictions can be 

relaxed, whereas a shorter cycle signals the need for stricter 

measures to control the outbreak. 

The ability of Fourier analysis to analyze epidemic wave 

breaks and provide meaningful statistics. We can discover the 

COVID-19 pandemic's hidden patterns by analyzing the 

frequency spectrum. 

CONCLUSION 

In this paper, noise removal of signals, noise reduction, image 

compression, MRI reconstruction, and COVID data analysis 

using FFT have been well studied. Using one one-

dimensional FFT, a noisy signal has been manipulated and a 

denoised signal has been recovered. It can be used in noise 

cancellation software to remove annoying sounds and create 

harmonious sounds. FFT is also used in creating an 

Autoencoder to denoise ECG and radio signals. The effects 

of two-dimensional FFT in images have also been illustrated 

here. The image can be compressed to a certain limit without 

losing its identity with the help of the FFT. We notice that 

transforming noisy data from the time domain to the frequency 

domain and reducing Fourier coefficients with lower 

magnitude, large computation can be performed using limited 

storage. This idea has long been used for data compression 

and Sparse computations; Thus, the Fourier Transform has 

huge applications in various linear algebra packages and data 

science. 

From this study, we are motivated to further research in 

Biomedical and seismic applications of the Fourier Transform. 
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